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SIMILARITY SOLUTIONS IN PLANE ELASTODYNAMICSt

FREDERICK REYES NORWOOD

Sandia Laboratories, Albuquerque, New Mexico 87115

Abstract-Using integral transforms, a connection is shown between Cagniard's technique and a class of
similarity solutions for plane problems in elastodynamics. These solutions are given in terms of analytic functions;
the functions are determined from the boundary conditions by the use of analytic function theory. This means
that the techniques developed by Muskhelishvili for static elasticity may be used to solve problems within the
class of similarity solutions. The Smirnov-Sobolev method is shown to be a special case of the general results
derived in the paper. To illustrate the application of the general results, the half-plane stress boundary value
problems of a suddenly applied line load, an expanding load, and a load over half of the bounding surface are
solved in detail.

NOTATION

Dx1 (k,p)

Ddk,p)

Dy\(k,p)

Dy2(k, p)

-kA(k,p)

- r,2(k)B(k, p)

-r,\(k)A(k,p)

kB(k,p)

Txx\(k, p) = (.l.ai +2Jlk2)A(k, p)

Txx2(k, p) 2Jlkr,2(k)B(k, p)

Tyy\(k, p) == Jl(a~ - 2k2)A(k, p)

T"'2(k, p) = - 2pkr,2(k)B(k, p)

TXy\(k, p) = 2pkr,\(k)A(k, p)

Txy2(k, p) = p(a~ - 2k2)B(k, p)

Tzz\(k, p) == .l.aiA(k, p)

Tzz2(k, p) == 0

1. INTRODUCfION

SIMILARITY methods in applied mathematics have provided a tool for solving some
problems of mathematical physics. In some cases these methods have yielded the solution
to formerly unsolved problems [1, 2]; while in other cases similarity methods have proved
well suited for previously solved problems (e.g., compare [3] and [4J), The derivation of
the similarity form of the solution has usually been effected by defining a new set of in­
dependent variables [1-4 and references thereinJ, and then casting the governing equations

t This work was supported by the United States Atomic Energy Commission.
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into a new form in terms of the new variables. The techniques employed to deduce the
similarity variables range from group theory [5J to dimensional analysis [6J, but, apparently,
not including integral transforms. The present work uses Laplace transforms to find a
general solution which, after some clearly defined assumptions. yield both the similarity
variables and the similarity solution.

In a series of papers Smirnov and Sobolev [7-IOJ developed a similarity method for
solving plane elastodynamic problems. The generality of the method noted by Miles [2J
has been exploited to solve diffraction problems [11-13J, crack propagation problems
[3. 14. 15J. and stress boundary value problems [7]. These references and their respective
bibliographies show that the use of this method has been relegated almost exclusively to
the Russian literature, and only mention of it has been made in other publications [2, 16,
17]. The work presented here contains the Smirnov and Sobolev method as a special case
of the general theory. and sets this method on a more precise mathematical foundation.
This is done. for example. by clearly stating the region of analyticity of the functions found
in the theory.

2. THE GENERAL PROBLEM AND SOLUTION

Statement of the problem

In a Cartesian coordinate system, consider the half-plane y > 0, with bounding surface
y = O. Deduce the form of the response of the medium when a load is suddenly applied.
at time t 0, to the surface y = O. The governing wave equations are

2 2 (l2<I> 2 2 02 '1'
CIV <I> = --;2. C2V 'I' = ---;z-, V. 'I' = O. (l )

vt ut

The potentials <I> and 'I' are related to the displacements through

u = V<I> +VX '1', (2)

where V2 is the Laplacian operator, C 1 and C2 the wave speeds, pci = i.+2f.1, pd = f.1. A
and f.1 are the Lame constants. and p is the material density. The stress-strain relations
needed in the sequel are

(3)

where bjj is the Kronecker delta. The potentials <I> and '1'. and also the displacements and
stresses. are required to vanish as y ---+ oc': that is

lim (<I>, '1', D, t) = O.
}'-oo

(4)

The initial conditions are taken as <I>(x, y. 0) = 'I'(x, y. 0) = o<l>(x, y. O)/ot = o'l'(x. Y. O)/ot
= 0, representing quiescence at t = O. It will be assumedt that Uz vanishes everywhere and
that Ux and uy are independent of z. These assumptions give T}.z = Txz t:zz = 0, and
'I' = 'Pez , where ez is the unit vector in the z-direction.

t These assumptions yield the plane strain case [18, p. 11].
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(5a)

(5b)

(6a)

(6b)

Formal solution. The one-sided and two-sided Laplace transforms to be used here are
defined, respectively, by the equations

/(x, y, p) = !f(f) = 50"" f(x, y, t)e- pt dt,

1 fC
+

ioo
~f(x, y, t) = 2 . f(x, y, p) ept dp,

TC1 c-ioo

]L(k, y, p) = f~oo ](x, y, p) epkx dx,

](x, y, p) = 2ni f~::JL(k, y, p) e-
pkx

dk

where c is chosen to the right of any singularity ofJ In accordance with Lerch's theorem,
it is sufficient to assume in (6) that p is a real positive number [19J, for this guarantees a
unique inverse. In (6) - I; lies within the strip of convergence [24].

The application of (5a) and (6a) to the first of equations (1), using (4) and the indicated
initial conditions, leads to the ordinary differential equation for <iiI. and its solution

d2ci>L
d

y
2 + p2k2

ci>L = aip2ci>L, aic i = 1, (7)

ci>L = A(k,p)e-pq,(k)Y,

Similarly one finds that

(8)

(9)

The time Laplace transforms of <1> and 'II may be written as

f
ioo -c

ci>(x, Y p) = !!- A(k, p) e- p[qdkl}' + kx] dk,
2rc -ioo-'

f
iOO-C

'¥(x, y, p) =~ B(k, p) e- p[q2(k)y+kx] dx.
2m -;00-'

(10)

(11)

By applying (5a) and (6a) to (2), and using (8) and (9), one finds the Laplace transforms
of the displacements:

j = x,y, (12)

a. (x y p) = J!.. fioo-C pD. (k p)e-p[q·(k)y+kX]dk
Ja. ~, 2ni _ioo _ € Jrx' ,

C( = 1,2, (13)

where the Dja appear in the Appendix. By a similar process one deduces the Laplace
transforms of the stresses as

j,m = x,y, (14)

P fioo -,r· (x y p) = - p2 T. . (k p) e-p(q·(k)y+kx] dk
]ma. " 2ni _ioo -f. mJrJ. OJ •

(15)
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Equations (8-15) represent the general solution of the equations of e1astodynamics
for the half-plane. The unknowns A(k, p) and B(k, p) are determined from the boundary
conditions for a specific problem.

3. SIMILARITY SOLUTIONS

Using the equations of Section 2, similarity solutions will now be developed by making
specific assumptions on the singularities of A(k, p) and B(k, p) in the complex k-plane.

A. The similarity method

In the evaluation of the right side of (10-15) for x > 0, one closes the contour to the
right of the integration path as shown in Fig. I. Paths I and II are Cagniard paths [20J
along which Im(IJ"Y+kx) = O. The similarity solution desired is obtained by assuming that

(a) the integration path of(10-15) is equivalentt to either path I or path II, depending
on the ratio of x to y and the value of (1., and

Cut

i

Path I

x- Branch
poinT

k - Plane

FIG. I. Integration paths in the k-pJane.

(b) A(k,p) and B(k,p) are separable; that is A(k,p) = p-nA(k, 1), B(k,p) = p-nB(k, 1).

Under these conditions (10) reduces to

<I>(x,y,p) = pI-.nf A(k,l)e- Pr(kl dk,
2m path [

t = IJI(k)y+kx,

t For equivalence see [21]. The basic assumptions will be considered in the last section.

(16)

(17)
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(18)

(21 )

(20)

where A(k, 1) is an analytic function of k along the path and 1m t = O. By changing the
variable of integration in (16) from k to t one is led to

on-I<I>(x,y,t)=5f_ I[n_lti\i , )]=5f- 1[_1 f. Ak1)ok -Pt dt ]

anI p ...,.,x, .h P 2 . .' 0 e
t 7rJ Path \ t

[
1 JctJ

ok 1 fa,r ok ]
= 5f-\ -2' A(k\, 1)~ e- pt dt+-

2
. A~, 1)-8I e- pt dt

11:1 a,r lit 11:1 ctJ t

1 [ ak l - a-r;]
= 211:i A(k l , 1)at- A(k l , 1)at XI

_ R [A(k l , 1) Ok l ]
- e .' XI

7rJ at
_ 0 Sk' A(k, 1)
- Re -;- --.- dk XI'

lit 0 7rJ

where the path of integration in the last line is confined between the origin and the Cagniard
path 1 [A(k, I) is analytic throughout the integration path], 5f- I means the inverse time
Laplace transform, k I is the complex conjugate of kI' XI is the characteristic function
XI = H(t-alr), H(t) is the Heaviside unit function, r2 = x2 +i,

k = _~_+itlJ[1-ai(~2+tl2)] ~ =~, tI = ~t' (19)
I ~2+tl2 ~2+tl2 ' t

and k I was deduced from t - k I X - til (k I)Y = O. The integral appearing in (18) is an analytic
function of k I [22, 23].

Restricting a to the value one (a = 1) and following the steps shown in (18), one finds
that

an
-

2
Ujl (X, Y, t) _ 0 SkI Djl(k, 1) dk
8 n 2 - Re -;- . XI

t lit 0 1!1

8n
- 3'jml(X, Y, t) _ 0 SkI Tjml(k, 1) dkon 3 - Re -;- . XI'

t lit 0 1!1

If the order of differentiation in the left side of (18), (20) and (21) is negative, then one
interprets the operation as differentiation of the right side [24, Art. V.10], for example
if n = 2 then (21) gives

(22)

(25)

(24)

(23)

When a = 2 and for 'I' the steps shown in (18) must be modified to include the branch cut
contributions. The final expressions are

an
- I'I'(X, y, t) _ "~Skl B(k, 1) dk
an I - Re L.. a . X"

t 1=2.3 t 1!1

an
-

2
U j2(x,y,t) = Re " ~SkIDj2(k,l)dk
.:In-2 L...:l . X"ut 1= 2,3 ut 0 1!1

an
-

3
'mj2(X, y, t) = Re " ~Skl Tmj2(k, 1) dk
an-3 L.. .:l . X"

t /=2.3 ut 0 1!1
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where X2 and X3 are the characteristic functions

X2 H(t - a2r),

X3 = H[t-a1x- y(a~-ai)t]-H(t-a2r),

k _ ~ it/~[l-a~(e +'1
2

)]
2-e+t/2+ ~2+t/2 '

k __~__ t/J[a~(~2+'12)-I]

3 - e+t/2 ~2+t/2 '

(26)

(27)

(28)

(29)

where the positive root is always taken in (28) and (29). A discussion on the determination
of the proper sign for (29) is given in the Appendix.

For x < 0 the contour of (10)-(15) is closed to the left of the imaginary axis by the
the mirror images about the origin of C ± I' C ± 2, path I, and path II shown in Fig. 1. The
desired similarity solution may be obtained by introducing a third assumption analogous
to but independent of condition (a). This means that the region x < 0 (or x > 0) may
admit a similarity solution independently of the form of the solution for x > 0 (or x < O).t

For x < 0 one assumes that condition (b) holds and that
(c) the integration path of (10)-( 15) is equivalent to the mirror image of either path I

or path II.
Under these assumptions it is easy to see that (18)-(22) also hold for x < O. By a careful
analysis one concludes that (23)-(29) hold for x < 0, provided that one replaces k3 by k4

and X3 by X4, where

k = _~_+t/J[a~(~2 +t/2)_1)]
4 e+t/2 e+t/2

14 = H[t+a1x- y(a~ -a~)1] -H(t-a2r).

For example

(25')

In (18)-(25) the lower limit of integration may be changed to a point where the integrand
is analytic and remains analytic throughout the integration.

B. The Smirnov-Sobolev method
The generality of the relations derived in the previous section allows one to deduce the

equations embodied in Smirnov-Sobolev method as a special case of equations (18)-(29).
These equations will now be derived to give an illustration on the use of(18)-(29) in solving
plane problems. To simplify the work starred complex quantities are defined such that for
all items of interest

I Re{f*}. (30)

t See [25] where only the region x < 0 admits a solution of the form given by (l8H29). For x> 0 there is a
pole between the imaginary axis and path I so that assumption (a) is violated.
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(31 )

(32)

(33 )

Let us identify k l , k2 and k3 , respectively, with ()\> ()2 and ()3 of [7]. Then, by writing
kl = a l +i'l the first of equations (1) reduces to Laplace's equation

02 <1> 02 <1>
~+T2=0'
val v'l

corresponding to (10 1 ) of [7]. Similar results are found for the second of equations (1) with
k2 = a2 +i'2 and k 3 = 0"3+'3' From (31) it follows that <1> is a harmonic function and
therefore can be represented by the real or imaginary part of an analytic function of kl .

Select now n = 2 in (18)-(29) for x > O. Then

fk 1 A(k 1)
<1>*(x,y,t) = --'.-dkXl = F(kl)Xl'

o Tn

fk 1 B(k, 1)
'P*(x, y, t) = I -.- dk XI = I G(k/)x"

/=2,3 0 7l:1 1=2,3

whtre F(kd, G(k z) and G(k 3 ) are analytic functions of their respective arguments, and

dF(k) = F'(k) = A(k, 1)
dk xi '

dG(k) _ G' k _ B(k, 1)
dk - () - xi . (34)

Equations (32)-(34) have the same form as the solution derived in [7J. In this reference,
however, the factors Xl' Xz and X3 were not obtained as directly as in the present work.
Substituting (34) in (20), one obtains

Using the fact that t - xk 1 - y(ai - ki)+ = 0, the preceding may be written as

* ( _' k ok l
Uxl x, y, t) - F ( l);;-Xl'

vX
(35)

(36)

Similarly the substitution of(34) into (23), using t-xk a - y(a~ -k;rl~ = O. IX = 2,3, leads to

* , _ ' ok l "ok z ,ok3
ux(x, Y, t) - XlF (k 1);;-+ G (k 2);;-X2 + G (k 3);;-X3'

vX vy vy

One also finds that

(37)

Equations (36) and (37) may be reduced to

(38)

in agreement with equation (20) of [7J.
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(39)

(40)

(41 )

(42)

(43)

(44)

(45)

(46)

(47)

The corresponding equations for x < 0 are obtained from (32}-(46) upon replacing k 3 by
k4 and X 3 by X4' If the positive square root is to be taken, then [7J fails to give the proper
sign for k4 , and also the proper signs for X4' With these remarks, and the further condition:

(d) assumptions (a), (b) and (c) hold simultaneously,
one deduces from (30}-(46) the equations of the Smirnov-Sobolev method.

The form of the similarity solution in the Smirnov-Sobolev method restricts the
imposed loads to the strip on the y = 0 plane satisfying Ixl < c2 t. In this strip XI = X2 = 1,
X3 = 0 and k l = k2 = tlx. Thus the boundary conditions imposed on the problem have
to be such that on y = 0 the integrals

J
t JtJtz
o u(x,t)dt, 0 0 -r(x,t 1)dt l dt 2

are functions of tlx only; here u and -r represent given displacements or stresses. It is im­
portant to note that y = 0 corresponds to the real axes of the c')mplex k l , k 2 planes, and,
consequently, prescribing boundary conditions at y = 0 may be interpreted as prescribing
<I> and 'P, or linear functions of <I> and 'P, along the real axes of the k I ' k 2 planes. Denoting
by fo(t/x) the value of f*(k) when 1m k = 0, the expression for y > 0 may be determined
from

f*(k) = ~ Jet) j~(w) dw.
1tI -00 w-k

(48)

This last equation was deduced from the Poisson integral formula for the half-plane
[23, p. 595J. This formula is used to find C1l*(k l ), 'P*(k 2 ), and other required functions, and
all of these functions are required by the method to be analytic between the Cagniard



Similarity solutions in plane e1astodynamics 797

(49)

(51)

paths of Fig. 1 and their mirror images. By comparison, the general approach given in
Section 3.A requires analyticity only between the integrating path of (lOH15) and the
Cagniard paths to the right or to the left of this path.

For problems where the method has been used the reader is referred to the references
in the Introduction. In the next section the method is applied for cases where n is different
from 2; also problems solved using the technique of Section 3.A are given.

4. APPLICATIONS OF THE TECHNIQUE

Expanding load

Consider the half-plane described previously. A load is suddenly applied, at time
t = 0, to the surface y = 0 such that

_{- III for Ixl < tla, az < a,
T"y(X,O, t) - .
. 0 otherwIse,

TX),(x, 0, t) = 0 for all x. (50)

This load satisfies the spatial requirement for the extended Smirnov-Sobolev method, for
it lies within the strip Ixl < ezt indicated before equation (47). The value of n needs to be
determined.

Using (48) one finds the complex function S:,,(x, y, t) such that when y = 0 Re S:ix, 0, t)
= T),),(X,O, t). This function is given byt

* /11 1 k~+aSyy(x, y, t) = - III --;- n --,
1!l k~-a

k~-a It exp(iO\), 0::; 0\ < 2n, (52)

k~+a 12exp(i02), n < O2 ::; n. (53)

(52) and (53) are dictated by the analyticity requirements of the method. The required
branch cuts are shown in Fig. 2. Equations (21), (25) and (51) imply that n = 4. This leads to

111- I~ In w+a = Ilfw [(a~-2k2)F'(k)-2k(a~-e)tG'(k)]dk (54)
1!l w-a 0

o = 11 foro [2k(a~ - k2 )tF'(k) + (a~ - 2k2)G'(k)] dk, (55)

where w is the common value of k t and k 2 attained when y = 0, OJ = tlx. Solving (54) and
(55) for F' and G', one obtains

F'(w) = -~. (a~-2w2) .~[ln w+aJ, (56)
m D(w) dw w-a

G'(w) = I .. 2w(a~-w2)t.~[lnw+aJ, (57)
m D(w) dOJ w-a

D(w) = (a~-2w2)2+4OJ(a~-OJ2)t(a~-w2)t, (58)

t k. is used here so that k. = tlx when y = o.
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I,

Cut

+
-0 o

x- Branch
POint

k; - Plane

FIG. 2. Branch cuts in the ki-plane.

and D(w) is identified as the Rayleigh frequency equation. The only singularities of P(k)
and G'(k) are branch points at ±a!> ±a2 , and simple poles at fa, ± t/cR , where CR is the
Rayleigh speed. It follows that Assumption (d) is satisfied.t The stresses and accelerations
are found by substituting (56H58) into (20H25), with n = 4.

The technique used here to derive the similarity solution yields an alternative formula
for finding S;y and S:y which is useful even when Assumption (d) is not satisfied. This
formula is given by

(59)

(60)

and n = 2+0'.

Uniform impulsive load for x > 0

When Assumption (d) is not valid, but (b) and either (a) or (c) are valid, then it is possible
to use the results of Section 3.A to obtain the required solution. The procedure will be
illustrated by solving the case when

!yy(x, 0, t) = -J(t)H(x),

!xiX, 0, t) = o.
(61)

(62)

By formula (60), one finds that

-L I
!yy(k, 0, p) = pk' Rek < O. (63)

t For stress boundary value problems the singularities of S;y and S:y determine whether or not Assumption
(d) is satisfied.
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(64)

From this it follows that (J = 1, n = 3, and by the remark following equation (25'),

1 fk« dk
Sjy(x, y, t) = ----: -k ' Re k; < O.

nl _<

For this equation, the right branch shown in Fig. 2 with a = 0 is applicable. One can see
that Assumption (a) is violated, but Assumption (c) still remains valid. Now that the value
of n has been determined, one uses the integrals of (21) and (25') to determine A(k,1),
B(k, 1), and the solution of the problem for x < 0:

1 fro dk 1 fro-: -k = -: ["TyyI(k, 1)+ "TyY2(k, I)J dk
1tl _, nl_,

o= f~, [TXyl(k, 1)+ T'xy2(k, 1)] dk.

From these equations one finds that

(65)

(66)

(a~ -2e)
A(k, 1) = jlkD(k) , B(k, 1) =

2(a~ _k2 )!

jlD(k) .
(67)

These results agree with the velocities computed in [25] for x < O. For example

aUxI(X,y,t) = R ~fkl (2k2-aDdke . Xl'at at _, jl1tlD(k)
(68)

Uniform line load

This problem is known as Lamb's problem and was solved in [7J by a procedure more
involved than that presented here. For this problem the boundary conditions are

This immediately leads to

'yy(x, 0, t) = o(t)o(x),

'xy(x, 0, t) = O.

(69)

(70)

-00 < k < 00, (71)

(72)

and hence (J = 0, n = 2. S;y and S~y have no singularities between the integration path of
(lOHI5) and any of the Cagniard paths and therefore Assumption (d) is satisfied. F' and
G' may be found by using (54) and (55), with the left side of (54) replaced by -(w/ni). One
finds thatt

'( ) _ (2w
2 -aD

F w - niD(w) ,

in agreement with equation (26) of [7].

(73)

t For the case iyy(X. O. t) = - H(t)t5(x). one simply requires n 3 and uses (73) unchanged to find the solution.
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Uniform step load for x > °
If, instead of equation (61), one has

TyiX, 0, t) = - H(t)H(x), (74)

then equations (49H58) may be used to find the solution. This is accomplished by noting
that the singularities of (51) contain information about the load. For example, the branch
point at -a arises from the portion of the load where x is negative. TyiX, 0, t) can be con­
sidered as the superposition of two expanding loads; that is, for t > 0,

Tyy(X,O, t) = Tyy+(X, 0, t) +Tyy -(x, 0, t), (75)

Tyy+(X, 0, t) = { I~ for °< x < t/a
(76)

otherwise,

Tyr(X, 0, t) = {I~
forO < -x < t/a

otherwise,
(77)

III
(78)S;y+(x,y,t) = -IIl+----:-In(ka-a)

1tl

III
(79)S;r(x, y, t) = -----:-In(ka+a).

1tl

With this separation one now decomposes F' and G' into F'+ + F'_ and G~ + G'_, re­
spectively. In the limit a ~ 0, F'+ and G'+ give the solution valid for x < °for the load of
(74). This is so because as a ~°the right branch point shown in Fig. 2 approaches the
origin, thus violating Assumption (a). Assumption (c) still remains valid, and, by the
remark after equation (25'), the lower limit of integration is now selected as - e. The re­
quired expressions for the problem are

, I(a~ - 2w2
) d

F +(w) = niD(w) dw[ln(w-a)],

, 21w(ai - w 2 yt d
G+(w) = - niD(w) dw[ln(w-a)],

I(a2 -2w2
)

lim F'+(w) = .2 D( ) ,
a-O+ nlW W

(80)

(81)

(82)

2I(ai _w2 )±
lim G'+ (w) = (83)

a-O+ niD(w)

Equations (78) and (79) provide a separation of S;y(x, y, t) in equation (51) of the type
employed in the'Wiener-Hopf technique. Syy+ is analytic to the left of k; = a in the k j ­

plane, while Syy - is analytic to the right of k; = - a in the k;-plane. It is decompositions
of this type which make the technique applicable to diffraction problems.
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5. DISCUSSION OF RESULTS

801

In the preceding sections similarity solutions were derived for plane problems in
elastodynamics. The solutions were found in terms of analytic functions of a complex
variable determined from the boundary conditions. This is an important finding which
permits the extension to elastodynamics of the techniques in [26, 27J, as will be shown by
the author in a paper presently in preparation. Under Assumption (d) the general technique
reduces to the Smirnov-Sobolev method. The general technique, however, indicates the
region of analyticity of the functions in the Smirnov-Sobolev method and yields the
characteristic functions Xi' Also, the similarity variables ka are obtained in a manner simpler
than that of [7].

The sample problems presented in the paper were selected only as simple illustrations
of the technique, and, with the exception of the response to the uniform expanding load,
the response to the other loads appears in previous works [7, 17, 20, 25]. However, in the
present work the response is easily deduced from the general formulae, obviating the
work in these references. The decomposition given in (75H83) is of the Wiener-Hopf type
suitable for diffraction and crack propagation problems.

The assumptions required in deriving the general formulae (l8H29) may be related to
the applied loads and to the physical space (x, Y, t), with t as a positive parameter. For
assumptions (a) and (c), the easiest way to establish this relationship is to consider
t = YJa(ka)y + kaY as a mapping for Y :2: 0. One finds thatt in the ka-plane Y > °maps onto
1m ka > 0; also, that Y = °maps onto the real ka-axis. The part of the boundary given by
Y = 0, °< x < tCa maps onto the semi-infinite line 1m ka = 0, Re ka > aa' and y = 0,°> x > - tCa maps onto the semi-infinite line 1m ka = 0, Re ka < - aa' By these mapping
arguments, and the branch cuts which arise in the technique, one may formally conclude
that Assumption (a) is satisfied for loads applied at y = °and - 00 < x < czt; likewise
one concludes that Assumption (c) is satisfied forloads applied at y = °and - czt < x < 00.

By the notation given for D ja and Tmja , it is easy to see that the requirement that A(k, p)
and B(k, p) be separable (Assumption b) is equivalent to the requirement that the double
transforms of the prescribed stresses or displacements be separable.
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APPENDIX. DETERMINATION OF k3 AND k4

The similarity variable k3 is obtained from k1 when the expression under the square
root sign becomes negative; that is, when l-a~(~z+l1z) < O. There results an ambiguity
as to the sign required in k3 so that the positive square root always be taken. This am­
biguity is resolved by noting that k3 is applicable only in region A shown in Fig. 3, and
arises from the branch cut contribution. This region is bounded by the curves t = azr and
t = alx+y(a~-ant and lies to the right of the line x(a~-aDt-alY = 0, where the inM

equality x(a~ - ah!- a1y > 0 is satisfied. From t = k 3x + y(a~ - k~yt and Fig. t along the
right branch cut k3 increases from at to a2x/r and t increases from t = atx+ y(a~ -ai)t
to 1 = a2r. Thus the partial derivative of k with respect to t must be positive. This is

y

o

xJa2-a2-a.y .. 0
2 , I "..

t-a;x +y ..10:- 0,2

x

FIG. 3. Diagram for determining k3 and k4 .
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satisfied by (35), for, by using x, y and t, instead of ~ and 11, one has

tx y.J(a~r2 - t2)
k3 = "2- 2 ' (2.1)

r r

ok3 _ ~+ yt > 0 (2.2)
at - r 2 r 2.J(a~r2 - t2) .

One further check is provided by substituting t = atx +y(a~ - ai)"! in (2.1). This sub­
stitution must yield k3 = at. The substitution yields

In region A the quantity inside the square brackets is positive. Thus since the positive
square root should be taken, one obtains

(2.4)

k4 is applicable in region B of Fig. 3. This region lies to the left of the line x(a~ - ai)!
+aly = 0, where the inequality x(a~-aD!+alY < 0 is satisfied. Along the left branch
cut of Fig. 1 k4 increases from a2x!r to -al and t decreases from a2r to y(a~-aD-alx.

Thus the partial derivative of k with respect to t must be negative. This is satisfied by
taking

(2.5)

and recalling that x is negative in region B. A check is provided by the substitution
t = y(a~-a~)!-alx, which yields

(2.6)

In region B the quantity inside the square brackets is negative. Thus, for the positive
square root, one obtains

(2.7)

(Received 17 July 1972; revised 18 November 1972)

A6cTpaKT-l1cnOJIb3Yll HHTerpaJIbHble npeo6pa30BaHHlI, AOKa3blBaeTCll CB1I3b MelKAY cnoco60M KaHbllPAa

H KJIaCCOM perneHHH nOAXOAa AIlll nJIOCKHX 3aAa'l B ynpyroil: AHHaMHKe • .[{alOTClI 3TH perneHHlI B BHAe

aHaJIHTH'IeCKHX cPYHKI.\HH; Ha OCHOBe TeopHH aHaJIHTH'IeCKHX cPYHKI.\Hil: onpeAeJIlIlOTClI cPYHKI.\HH perneHHH

H3 rpaHH'IHbIX yCJIOBHil:. 3TO 3Ha'lHT, 'ITO MO)J(HO HCnOJIb30BaTb MeTOAbI, pa3pa6oTaHbI MycXeJIHrnBHJIHM

AJIII 3aAa'l CTaTHKH TeopHH ynpyrocTH, AIlIl paC'IeTa APyrHx 3aAa'l B npeAeJIaX KJIaCCa perneHHil: nOAo6HlI •

.[{OKa3blsaeTclI 'ITO MeTOA CMHpHOBa-Co6oJIesa IIBJIlIeTCII OC06HM CJIy'laeM 06Il.\HX pe3yJIbTaTOB, nOJIy'l­

eHHbIX B pa60Te. C l.\eJIblO HJIJIIOCTpal.\HH npHMeHeHHlI 06Il.\HX pe3yJIbTaTOB, pernalOTCII v.0APo6HO: KpaeBble

3aAa'lH nOJIYITJIOCKOCTH B HanplllKeHHOM COCTOIlHHH, nOA BJIHIIHHeM BHe3anHO npHJIO)J(eHHoil: JIHHeHHoil:

Harpy3KH, Harpy3Ka paCTlIlKeHHII H Harpy3Ka no nOJIOBHHe rpaHH'IHoil: nOBepXHOCTH.


